Data Selection & Collection: Trigger & DAQ EDIT 2012 Symposium Wesley H. Smith U. Wisconsin - Madison February 17, 2012

Outline: General Introduction to Detector Readout Introduction to LHC Trigger & DAQ Challenges & Architecture Examples: ATLAS & CMS Trigger & DAQ THE UNIVERS

clock

Detector / Sensor

Amplifier

Filter

Shaper

Range compression

Sampling

Digital filter

Zero suppression

Buffer

Feature extraction

Buffer Format & Readout

to Data Acquisition System

from H. Spieler "Analog and Digital Electronics for Detectors"

Photomultiplier serves as the amplifier Measure if pulse height is over a threshold

2012

Filtering & Shaping

Purpose is to adjust signal for the measurement desired

- Broaden a sharp pulse to reduce input bandwidth & noise
 - Make it too broad and pulses from different times mix
- Analyze a wide pulse to extract the impulse time and integral \Rightarrow

Example: Signals from scintillator every 25 ns

- Need to sum energy deposited over 150 ns
- Need to put energy in correct 25 ns time bin
- Apply digital filtering & peak finding
 - Will return to this example later

In the trigger path, **digital filtering** followed by a **peak finder** is applied to energy sums **(L1 Filter)**

Efficiency for energy sums above 1 GeV should be close to 100% (depends on electronics noise)

Pile-up effect: for a signal of 5 GeV the efficiency is close to 100% for pile-up energies up to 2 GeV (CMS)

EDIT 2012

Sampling & Digitization

- Signal can be stored in analog form or digitized at regular intervals (sampled)
 - Analog readout: store charge in analog buffers (e.g. capacitors) and transmit stored charge off detector for digitization
 - Digital readout with analog buffer: store charge in analog buffers, digitize buffer contents and transmit digital results off detector
 - Digital readout with digital buffer: digitize the sampled signal directly, store digitally and transmit digital results off detector
 - Zero suppression can be applied to not transmit date containing zeros
 - Creates additional overhead to track suppressed data

Signal can be discriminated against a threshold

 Binary readout: all that is stored is whether pulse height was over threshold

2012 2012

Range Compression

Rather than have a linear conversion from energy to bits, vary the number of bits per energy to match your detector resolution and use bits in the most economical manner.

- Have different ranges with different nos. of bits per pulse height
- Use nonlinear functions to match resolution

EDI7 2012

Baseline Subtraction

Wish to measure the integral of an individual pulse on top of another signal

- Fit slope in regions away from pulses
- Subtract integral under fitted slope from pulse height

Wesley Smith, U. Wisconsin, February 17, 2012

EDIT 2012: Trigger & DAQ - 8

Triggering

Task: inspect detector information and provide a first decision on whether to keep the event or throw it out

The trigger is a function of :

Event data & Apparatus Physics channels & Parameters

 Detector data not (all) promptly available
 Selection function highly complex
 ⇒T(...) is evaluated by successive approximations, the TRIGGER LEVELS

(possibly with zero dead time)

EDIT 2012

LHC Collisions

Wesley Smith, U. Wisconsin, February 17, 2012

EDIT 2012: Trigger & DAQ - 10

Beam Xings: LEP. TeV, LHC

LHC has ~3600 bunches

- And same length as LEP (27 km)
- Distance between bunches: 27km/3600=7.5m
- Distance between bunches in time: 7.5m/c=25ns

LHC Physics & Event Rates

σ

barn

mb

ub

nb

pb

fb

LHC

√s=14TeV

σ inelastic

bb

At design $L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

- 23 pp events/25 ns xing
 - •~ 1 GHz input rate
 - •"Good" events contain ~ 20 bkg. events
- 1 kHz W events
- 10 Hz top events
- < 10⁴ detectable Higgs decays/year
- Can store ~ 300 Hz events
- **Select in stages**
 - Level-1 Triggers
 - •1 GHz to 100 kHz
 - High Level Triggers
 100 kHz to 300 Hz

 $l = 10^{34} cm^{-2} s^{-1}$

LV1 input

ev/year

10 17

10 16

10 15

10 14

rate

GHz

Collisions (p-p) at LHC

Wesley Smith, U. Wisconsin, February 17, 2012

Processing LHC Data

WISCONSIN

2012

LHC Trigger & DAQ Challenges

Challenges: 1 GHz of Input Interactions Beam-crossing every 25 ns with ~ 23 interactions produces over 1 MB of data

Archival Storage at about 300 Hz of 1 MB events

pulse shape

-2 -1

Challenges: Pile-up

In-time" pile-up: particles from the same crossing but from a different pp interaction

super-

impose

- Long detector response/pulse shapes:
 - "Out-of-time" pile-up: left-over signals from interactions in previous crossings

In-time

pulse

6 7 8 9 10 11 12 13 14 15 16 17

 Need "bunch-crossing identification"

Wesley Smith, U. Wisconsin, February 17, 2012

t (25ns units)

0 1 2 3 4 5

Challenges: Time of Flight

c = 30 cm/ns \rightarrow in 25 ns, s = 7.5 m

Wesley Smith, U. Wisconsin, February 17, 2012

5015 5015

LHC Trigger Levels

Collision rate 10⁹ Hz

Channel data sampling at 40 MHz

Level-1 selected events 10⁵ Hz

Particle identification (High $p_{T} e, \mu$, jets, missing E_{T})

- Local pattern recognition
- Energy evaluation on prompt macro-granular information

Level-2 selected events 10³ Hz

Clean particle signature (Z, W, ..)

- Finer granularity precise measurement
- Kinematics. effective mass cuts and event topology
- Track reconstruction and detector matching

Level-3 events to tape 100- 300 Hz Physics process identification

• Event reconstruction and analysis

Trigger Timing & Control

Optical System:

Single High-Power Laser per zone

- Reliability, transmitter upgrades
- Passive optical coupler fanout
- 1310 nm Operation
 - Negligible chromatic dispersion

InGaAs photodiodes

 Radiation resistance, low bias

EDIT Detector Timing Adjustments

Need to Align:

- Detector pulse w/collision at IP
- Trigger data w/ readout data
- Different detector trigger data w/each other
- Bunch Crossing
 Number
- Level 1 Accept
 Number

Wesley Smith, U. Wisconsin, February 17, 2012

DIT Synchronization Techniques

2835 out of 3564 p bunches are full, use this pattern:

WISCONSIN

ATLAS Detector Design

Muon Spectrometer ($|\eta|$ <2.7)

air-core toroids with muon chambers.

Calorimetry ($|\eta| < 5$) \checkmark

- EM : Pb-LAr
- HAD : Fe/scintillator (central), Cu/W-Lar (fwd)

Tracking ($|\eta| < 2.5$, B=2T)

- Si pixels and strips
- TRD (e/π separation)

CMS Detector Design

Wesley Smith, U. Wisconsin, February 17, 2012

EDIT 2012

ATLAS & CMS Trigger Data

Use prompt data (calorimetry **MUON System** and muons) to identify: Segment and track finding High p, electron, muon, jets, missing E_{τ} n n D **CALORIMETERS** Cluster finding and energy deposition evaluation New data every 25 ns Decision latency ~ µs

ATLAS & CMS Level 1: Only Calorimeter & Muon

High Occupancy in high granularity tracking detectors

 Pattern recognition much faster/easier

ATLAS Three Level Trigger Architecture

- LVL1 decision made with <u>calorimeter</u> data with coarse granularity and <u>muon trigger</u> <u>chambers</u> data.
 - Buffering on detector
- LVL2 uses <u>Region of Interest</u> <u>data</u> (ca. 2%) with full granularity and combines information from all detectors; performs fast rejection.

Buffering in ROBs

EventFilter refines the selection, can perform event reconstruction at full granularity using latest alignment and calibration data.

Buffering in EB & EF

ATLAS Level-1 Trigger -Muons & Calorimetry

ATLAS LVL1 Trigger

EDIT 2012

Rol Mechanism

LVL1 triggers on high p_T objects

 Caloriemeter cells and muon chambers to find e/γ/τ-jet-μ candidates above thresholds

LVL2 uses Regions of Interest as identified by Level-1

 Local data reconstruction, analysis, and sub-detector matching of Rol data

The total amount of Rol data is minimal

 ~2% of the Level-1 throughput but it has to be extracted from the rest at 75 kHz

CMS Trigger Levels

Wesley Smith, U. Wisconsin, February 17, 2012

EDIT 2012: Trigger & DAQ - 35

EDIT Calorimeter Trigger Processing

2012

ECAL Trigger Primitives

In the trigger path, **digital filtering** followed by a **peak finder** is applied to energy sums (L1 Filter)

Efficiency for energy sums above 1 GeV should be close to 100% (depends on electronics noise)

Pile-up effect: for a signal of 5 GeV the efficiency is close to 100% for pile-up energies up to 2 GeV (CMS)

Test beam results (45 MeV per xtal):

EDIT 2012: Trigger & DAQ - 37

THE UNIVERSIT

- Redefine jet as τ jet if none of the nine 4x4 region $\tau\text{-veto}$ bits are on Output

• Top 4 τ-jets and top 4 jets in central rapidity, and top 4 jets in forward rapidity

CMS Muon Chambers

EDIT 2012: Trigger & DAQ - 40

Memory to store patterns

Fast logic for matching

FPGAs are ideal

DT and CSC track finding:

- Finds hit/segments
- Combines vectors
- Formats a track
- Assigns p, value

CMS Muon Trigger Track Finders

Drift Tubes (DT)

Drift Tubes

Meantimers recognize tracks and form vector / quartet.

Correlator combines them into one vector / station.

Cathod Strip Chambers (CSC)

Comparators give 1/2-strip resol.

Sort based on P_T , Quality - keep loc.

Combine at next level - match

Sort again - Isolate?

Top 4 highest P_T and quality muons with

Hit strips of 6 layers form a vector OCation coord.

Match with RPC Improve efficiency and quality

EDIT 2012 Input:

CMS Global Trigger

- Jets: 4 Central, 4 Forward, 4 Tau-tagged, & Multiplicities
- Electrons: 4 Isolated, 4 Non-isolated
- •4 Muons (from 8 RPC, 4 DT & 4 CSC w/P, & quality)
 - All above include location in η and ϕ
- Missing E₇ & Total E₇ Output
 - L1 Accept from combinations & proximity of above

Global L1 Trigger Algorithms

Particle Conditions

Flexible algorithms implemented in FPGAs 100s of possible algorithms can be reprogrammed

Wesley Smith, U. Wisconsin, February 17, 2012

HLT: All processing beyond Level-1 performed in the Filter Farm Partial event reconstruction "on demand" using full detector resolution

Wesley Smith, U. Wisconsin, February 17, 2012

Start with L1 Trigger Objects

Electrons, Photons, τ -jets, Jets, Missing E_T, Muons

HLT refines L1 objects (no volunteers)

Goal

- Keep L1T thresholds for electro-weak symmetry breaking physics
- However, reduce the dominant QCD background
 - From 100 kHz down to 100 Hz nominally

QCD background reduction

- Fake reduction: e±, γ , τ
- Improved resolution and isolation: $\boldsymbol{\mu}$
- Exploit event topology: Jets
- Association with other objects: Missing E_T
- Sophisticated algorithms necessary
 - Full reconstruction of the objects
 - Due to time constraints we avoid full reconstruction of the event L1 seeded reconstruction of the objects only
 - Full reconstruction only for the HLT passed events

Electron selection: Level-2

"Level-2" electron:

- Search for match to Level-1 trigger
 - Use 1-tower margin around 4x4-tower trigger region
- Bremsstrahlung recovery "super-clustering"
- Select highest E_T cluster

Bremsstrahlung recovery:

- Road along ϕ in narrow $\eta\text{-window}$ around seed
- Collect all sub-clusters in road → "super-cluster"

Factor of 10 rate reduction

γ: only tracker handle: isolation

 Need knowledge of vertex location to avoid loss of efficiency

a)

c)

τ -jet tagging at HLT

 τ -jet (E_t^{τ -jet} > 60 GeV) identification (mainly) in the tracker:

Hard track, $p_t^{max} > 40$ GeV, within $\Delta R < 0.1$ around calorimeter jet axis **Isolation:** no tracks, $p_t > 1$ GeV, within $0.03 < \Delta R < 0.4$ around the hard track For 3-prong selection 2 more tracks in the signal cone $\Delta r < 0.03$

Further reduction by ~ 5 expected for 3-prong QCD jets from τ vertex reconstruction (CMS full simulation)

QCD jet rejection from isolation and hard track cuts

B and τ tagging

Efficiency to tag one b-jet ~ 35% for ~1% mistagging rate (CMS)

τ - tagging with impact parameter measurement

combining the ip measurements of the hard tracks in the two τ 's (τ -> hadron, τ -> lepton) into one variable: $\sqrt{\sigma_{ip}(\tau_1)^2 + \sigma_{ip}(\tau_2)^2}$

Signal superimposed on the total

CMS full simulation for

Soft b-jets with a wide η-range:

Prescale set used: 2E32 Hz/cm² Sample: MinBias L1-skim 5E32 Hz/cm² with 10 Pile-up

EDIT 2012 Event build

Building the event

Event builder :

Physical system interconnecting data sources with data destinations. It has to move each event data fragments into a same destination

PC motherboards for data Source/Destination nodes

Myrinet Barrel-Shifter

BS implemented in firmware

- Each source has message queue per destination
- Sources divide messages into fixed size packets (carriers) and cycle through all destinations
- Messages can span more than one packet and a packet can contain data of more than one message
- No external synchronization (relies on Myrinet back pressure by HW flow control)

zero-copy, **OS-bypass principle works** for multitage switches

Scale readout bandwidth: No. DAQ systems (1 to 8 x 12.5 kHz)

EDI2

Trigger & DAQ Summary: LHC Case

Level 1 Trigger

- Select 100 kHz interactions from 1 GHz
- Processing is synchronous & pipelined
- Decision latency is 3 μs (x~2 at SLHC)
- Algorithms run on local, coarse data
 - Cal & Muon at LHC
 - Use of ASICs & FPGAs
- **Higher Level Triggers**
 - Depending on experiment, done in one or two steps
 - If two steps, first is hardware region of interest
 - Then run software/algorithms as close to offline as possible on dedicated farm of PCs