

## Lepton Collider Detectors

Confronting the Challenges of Lepton Collider Experiments

> Jim Brau EDIT 2012 Fermilab February 24, 2012

# Lepton Collider Detectors

\* Physics Goals and Requirements
\* Collider Environment and Impact
\* Detector Technologies



2/24/2012

Jim Brau



# Exploring the Energy Frontier

**\*** Terascale Physics Era is underway

- LHC has accumulated 5 fb<sup>-1</sup> @ 7 TeV, and have a long-termplar

plan for achieving 3000 fb<sup>-1</sup> @ 14 TeV

\* A Lepton Collider is the essential complement to the LHC



\* Lepton Collider options cover range of new physics energies

 ILC will be ready to go when LHC sets the energy scale with new physics – if higher energy is required, CLIC and MuC are possible

 Experiments are challenging, demanding aggressive, focused detector R&D

2/24/2012

Jim Brau

# Standard Model Developed fromHadronandLepton Collisions





| <u>SM particle</u> | <u>discovery</u> | detailed study                           |
|--------------------|------------------|------------------------------------------|
| : •                | SLAC             | HERA                                     |
| m                  | PETRA            | Fermilab/ SLC/LEP                        |
| C                  | BNL SPEAR        | SPEAR                                    |
| <b>T</b>           | SPEAR            | SPEAR                                    |
| 6                  | Fermilab         | Cornell/DESY/SLAC/KEK                    |
| t                  | SPPS/CERN        | LEP and SLC                              |
|                    | Fermilab         | LHC +? (LC meas. Yukawa cp.)             |
|                    | <b>f</b> (1)     | на н |

Electron experiments frequently gave most <u>precision</u> as well as <u>discovery</u> LESSON FOR THE FUTURE

2/24/2012

Jim Brau

### Complementarity of Lepton & Hadron Colliders

Astronomers examine the universe with different wavelengths (visible, radio, X-ray, IR, etc.) Particle Physics uses different initial states for <u>independent</u> searches and tests Such complementarity is a powerful tool across all sciences



# Virtues of Lepton Colliders

Elementary interactions at known  $E_{cm}^{*}$ eg. e<sup>+</sup>e<sup>-</sup>  $\rightarrow$  Z H \* beamstrahlung manageable







# Virtues of Lepton Colliders

5(fb)

EDIT 2012

- ★ Elementary interactions at known E<sub>cm</sub>\*
   eg. e<sup>+</sup>e<sup>-</sup> → ZH \* beamstrahlung manageable
- ★ Democratic Cross sections eg.  $\sigma$  (e<sup>+</sup>e<sup>-</sup> → ZH) ~ 1/2  $\sigma$ (e<sup>+</sup>e<sup>-</sup> → d d)
- Inclusive Trigger-free data total cross-section
- \* Highly Polarized Electron Beam
   ~ 80% (also positron pol. R&D)
- \* Calorimetry with Particle Flow Precision  $\sigma_{\rm E}/{\rm E}_{\rm jet}$  ~ 3% for E<sub>jet</sub> > 100 GeV
- \* Exquisite vertex detection eg.  $R_{beampipe} \sim 1 \text{ cm and } \sigma_{hit} \sim 3 \mu \text{m}$
- ★ Advantage over hadron collider on precision
   eg. H → c c

#### MODEL INDEPENDENT MEASUREMENTS

2/24/2012

Jim Brau

ILC<sup>e<sup>+</sup></sup> Σqā  $10^{6}$  $(1 \neq 1)$ 77  $|\cos\theta| < 0.8$  $W^+W$ μ°μ  $|\cos\theta| < 0.8$ tī 175GeV  $10^{3}$ Zh 120GeV 230GeV 140GeV HA  $\tilde{\chi}^+ \tilde{\chi}^-$ 220GeV 400GeV ← H<sup>+</sup>H<sup>-</sup>  $H^+H^-$ 410GeV 190GeV  $10^{-2}$ 200 800 400600 1000 0  $\sqrt{s}$  (GeV)

9

# **Terascale Physics**

- Electroweak Symmetry Breaking
   Many theories aim to explain Hierarchy Problem
  - SUSY, XDimensions, New Strong Dynamics, Unparticles, Little Higgs, Z', ...



- Precision mass couplings (including the Higgs)
- Direct production of new states
- High energy behavior of cross sections (including asymmetries, CP violation, etc.)



Jim Brau

# Lepton Collider Physics

# LHC should point the way <u>soon</u>... then Lepton Collider physics program can be sharpened –

- Establish the mechanism for EWSB
  - - does Higgs boson have <u>Standard Model properties</u>? or NOT?
- Establish the nature of physics beyond the SM
  - such as SUSY, extra dimensions, ...
- Establish that accelerator-produced Dark Matter candidate does indeed resolve the cosmological Dark Matter problem
- Open new windows for discovery at the precision frontier
- Also sensitivity to new physics which might be lost in hadron collider eg. invisible decays or trigger losses







11

2/24/2012

Jim Brau

# - the Power of Simple Interactions

ILC observes Higgs recoiling from a Z, with known CM energy<sup>1</sup>

- powerful channel for unbiassed tagging of Higgs events
- measurement of even invisible decays







# Lepton Collider Options

Once the LHC produces new physics, the trade-offs between the three Lepton Collider options aimed at precision physics will be front and center

#### **\*ILC:** 0.5-1.0 TeV e<sup>+</sup>e<sup>−</sup> linear collider

- Superconducting RF accelerating cavities
- Technology demonstrated, ready to propose ~2012
- Physics/Detectors well studied, R&D ready ~2012

#### **\***CLIC: up to 3 TeV e<sup>+</sup>e<sup>-</sup> linear collider

- Two beam acceleration with warm RF
- R&D underway, but technical demonstrations needed
- Machine and Detector CDR in 2011, TDR in 2018-20?

#### **\***Muon Collider: up to 4 TeV $\mu^+\mu^-$ storage ring

- Fermilab's Muon Accelerator Proposal will study technical feasibility and cost of the machine
- Conceptual design ~2016-17

#### **\***Each presents a set of detector challenges







2/24/2012

#### Jim Brau

### LHC Progress Means LC Requirements Could Be Known Soon CHOICE DEPENDS ON AN INFORMED ANALYSIS ... physics issues defining required machine parameters... \* What is the maximum energy required? Is the new physics within range of ILC, or needing CLIC or MuC. \* What range of energies/luminosities is needed? Need to run at lower energies for Higgs, Top, Low Mass SUSY? Are threshold scans needed for precision measurements?

- \* How does beam energy spread matter for the physics? dL/dE differs among the machines. What is the impact?
- **\*** Is beam polarization essential and can it be measured?

...and detector capabilities enabling the machine
\* Can the detector do physics in the machine's environment?
\* Is detector performance adequate for the physics goals?
\* How critical is full solid angle coverage?

 $2/24/20\overline{12}$ 

Jim Brau

### Detector Requirements for Lepton Collider Physics Are Demanding

- Unambiguous identification of multi-jet decays of Z's, W's, top, H's, χ's,
  - Excellent jet energy resolution
- **\*** Higgs recoil mass and  $\chi$  decay endpoint measurements
  - Superb tracker momentum resolution
- Full flavor identification and quark charge determination for heavy quarks
  - Precise impact parameter resolution
- Identification and measurement of missing energy, eliminating SM backgrounds to SUSY
  - Full hermiticity

2/24/2012

# Lepton Collider Detector R&D

### \* ILC

 Several years of detector R&D have produced near maturity of detector technologies

\* CLIC

Experimental design has defined the detector R&D needs, and program is beginning – building on ILC program

★ MuC

 Experimental design needed now to formulate R&D program

16

### ILC Detectors Physics Requirements Are Set

| <u>Physics</u><br>Process                                                                                                 | <u>Measured Quantity</u>                                                                                  | <u>Critical</u><br><u>System</u> | <u>Critical Detector</u><br><u>Characteristic</u>                                        | <u>Required Performance</u>                                                                   |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| $H \rightarrow b\overline{b}, c\overline{c}, gg$ $b\overline{b}$                                                          | Higgs branching fractions<br>b quark charge asymmetry                                                     | Vertex<br>Detector               | Impact parameter<br>⇒ Flavor tag                                                         | $\delta_b \sim 5\mu m \oplus 10\mu m/(p\sin^{3/2}\theta)$                                     |
| $ZH \rightarrow \ell^{+} \ell^{-} X$ $\mu^{+} \mu^{-} \gamma$ $ZH + H \nu \overline{\nu}$ $\rightarrow \mu^{+} \mu^{-} X$ | Higgs Recoil Mass<br>Lumin Weighted E <sub>cm</sub><br>BR (H →µµ)                                         | Tracker                          | Charge particle momentum<br>resolution, $\sigma(p_t)/p_t^2$<br>$\Rightarrow$ Recoil mass | $\sigma(p_t)/p_t^2 \sim few \times 10^{-5} GeV$                                               |
| ZHH<br>$ZH \rightarrow q\overline{q}b\overline{b}$<br>$ZH \rightarrow ZWW^*$<br>$\sqrt{v}W^+W^-$                          | Triple Higgs Coupling<br>Higgs Mass<br>BR (H $\rightarrow$ WW*)<br>$\sigma(e+e- \rightarrow \nu\nu W+W-)$ | Tracker &<br>Calorimeter         | Jet Energy Resolution, $\sigma_E/E$<br>$\Rightarrow$ Di-jet Mass Res.                    | ~3% for $E_{jet} > 100 \text{ GeV}$<br>30% / $\sqrt{E_{jet}}$ for $E_{jet} < 100 \text{ GeV}$ |
| SUSY, eg.<br>$\tilde{\mu}_{ m decay}$                                                                                     | $	ilde{\mu}_{ m mass}$                                                                                    | Tracker,<br>Calorimeter          | Momentum resolution,<br>Hermiticity<br>⇒ Event Reconstruction                            | Maximal solid angle coverage                                                                  |

2/24/2012

#### Jim Brau

### New Physics Could Change Expectations

Physics surprises could reshape the standard detector. We may have to accommodate:

- Very long-lived massive particles which stop in the calorimeters or decay beyond the tracker?
- **\*** Extremely high decay multiplicities from mini-black holes or ???
- \* "Weakly" interacting (e.g., fractional or milli-charged) particles requiring enhanced detector sensitivity?

#### New technologies should expand detector capability.

- **\*** Pico-second timing measurements?
- ★ Vastly higher pixel counts?

Much more information per measurement and improved energy or spatial resolution. Particle flow calorimetry and cluster counting drift chambers are steps in this direction.

#### **\*** Real time feedbacks?

Astronomical observatories correct mirror sag, temp effects, and atmospheric distortions in real time. What can real time feedbacks do for particle physics observatories?

2/24/2012

Jim Brau

EDIT 2012 18

# The International Linear Collider

#### ★ 500 GeV E<sub>cm</sub>

- Two 11 km SuperRF linacs at 31.5 MV/m
- Centralized injector (polarized electrons)
- Circular damping rings
- Undulator based positron source (polarized)
- Single IR for two detectors (push-pull)
   w/ 14 mr crossing angle
- ★ Upgradable to 1 TeV
- **\*** Options
  - Hi luminosity at M<sub>z</sub> / W pair threshold

Jim Brau

 $-\gamma\gamma$ ,  $e\gamma$ ,  $e^-e^-$ 

2/24/2012



### ILC Environment Poses Challenges

Tiny beam spots, intense collisions lead to e+e- pairs from beamstrahlung



Most pairs at ILC are trapped by the solenoid, but vertex occupancies are still challenging



2/24/2012

Jim Brau

 $\gamma\gamma \rightarrow e+e-, \mu+\mu-, hadrons reactions put$ a premium on short detector livetimes Livetime 40  $\mu s \sim 130 BX$ 



#### Livetime 100ns ~ 1 BX



### ILC Vertex Readout Challenge

✤ Bunch train structure can swamp the inner layers of the VXD with beamstrahlung induced pair backgrounds.



★ To reduce occupancies to

 ≤ 5 mm<sup>-2</sup>, must read out
 ≥50 times per bunch train.

 ★ New sensor technologies are being developed to speed readout, reduce occupancy.

Jim Brau



2/24/2012

### **CLIC Environment More Challenging**







### CLIC Environment: More $\gamma\gamma$ → hadrons

#### Per bunch crossing (every 0.5 ns)

3.3 γγ→ hadrons events
28 particles into the detector
50 GeV deposited

#### Per bunch train (duration 156 ns)

9000 particles into the detector! Most particles into forward detectors 15 TeV deposited!



EDIT 2012

23

#### **5-10 NS TIME STAMPING REQUIRED**

2/24/2012

Jim Brau

### **CLIC Environment Impacts Detector Design**

#### Vertex Detector Challenges (above and beyond ILC)

- ★ Multi-hit capability with 10 ns time-stamping
- \* Read out full bunch train (300 bunches)
- ✤ DAQ between bunch trains (20 ms)

#### **Calorimetry Challenges**

- ★ Good resolution at highest energies  $\rightarrow$  7.5 λ Hcal
- Excellent segmentation to separate particles in HE jets
- **\*** Time stamping ~5-10 ns

#### Pandora PFA used for Hcal Studies



Jim Brau

EDIT 2012

24

### MuC Environment Extremely Challenging

- 1. <u>IP incoherent e<sup>+</sup>e<sup>-</sup> pair production: 3×10<sup>4</sup> electron pairs/ bunch crossing</u>
- 2. <u>Beam halo</u>: Severe beam loss at limiting apertures, but collimators help
- 3. <u>Muon beam decays:</u> Intense Background!
  - For 0.75-TeV muon beam of 2x10<sup>12</sup>, 4.3x10<sup>5</sup> decays/m per bunch crossing, or 1.3x10<sup>10</sup> decays/m/s for 2 beams



### MuC MDI Challenges

- Machine Detector Interface issues need thorough assessment
  - realistic machine lattice and full MARS simulations can assess the decay backgrounds.

6m Conical Tungsten Mask

A tungsten cone at the IP intercepts the intense background of decay electrons.

6 < z < 100 cm  $\theta = 10^{0}$ 100 < z < 600 cm  $\theta = 5^{0}$  Tungsten Cones on Beamline

Beware Aspect Ratio!



2/24/2012

#### Jim Brau

MuC Radiation Hardness Occupancy Challenges

**Total Absorbed Dose ~ LHC** Total absorbed dose in Si at r = 4cm Muon Collider: 0.1 MGy/yr



Vertex Radius Backgrounds limit min radius to ≥ 5 cm Vertex Occupancy 1.3% occupancy in

inner layer with  $300 \times 300 \ \mu m^2$  pixels.



### MuC Calorimeter Depositions (>100 TeV)



### Steps in Detector Concept Development



### ILC Detectors Have Advanced Through This Development Process



2/24/2012

 Evolution of ILC detector concepts is captured in a series of documents

| Detector Outline Document | 2006 |
|---------------------------|------|
| Detector Concept Report   | 2007 |
| Letters of Intent (LoI)   | 2009 |
| Detailed Baseline Design  | 2012 |

★ Detector LoI (2009)

Detailed detector description Status of critical R&D Full GEANT4 simulation Benchmark analyses Costs

★ This year – Detailed Baseline Design

Jim Brau

#### EDIT 2012 30

### **Optimized & Validated ILC Detectors**



2/24/2012

#### <u>SiD</u>

- Compact volume using high precision silicon tracking with 5 Tesla B-field
- Silicon timing capability provides robustness to backgrounds
- Calorimetry based on Particle Flow and Si-W Ecal
- Cost constrained design to meet all ILC physics goals

### ILD

- ✤ Relatively large detector -3.5 Tesla B-field
- Designed for Particle Flow with a highly granular calorimeter
- ★ State-of-the-art gaseous tracker (TPC)
- Solid state vertex detector & assists TPC tracking

Jim Brau

#### EDIT 2012 31

# ILC Vertex Detectors

#### **Requirements**

- Superb impact parameter resolution ( 5µm ⊕10µm/(p sin<sup>3/2</sup>θ) )
- Excellent spacepoint precision ( < 4 microns )
- Transparency (~0.1% X<sub>0</sub> per layer )
- Track reconstruction (find tracks in VXD alone)
  - Requires good angular coverage with several layers close to IP
- Sensitive to acceptable number of bunch crossings ( <150 BX = 45 msec)</li>
- Electromagnetic interference (EMI) immunity
- Power Constraint (< 100 Watts) to achieve optimal transparency
- Tough requirements
- Development of candidate VXD sensors have produced prototypes.
- Integration issues have been addressed (mechanics, power, heat,...)
- Technical demonstration still needed.











#### DEPFET



**CPCCD** 32

EDIT 2012

#### 2/24/2012

Jim Brau

# **ILC Particle Flow Calorimetry**

•Conventional calorimetry relies on energy measurement in calorimeter, <u>alone.</u>

#### **Particle Flow Calorimetry**

•Charged particles are measured in tracker before calorimeter with much higher precision that calorimeter offers.

•So

- Identify energy deposited in calorimeter by each charged track.
- Use tracker for charged particle measurements and calorimeter for neutral particles

•This separation of each individual track (charged and neutral), requires a finely segmented calorimeter.



| Jet Component  | Resolution              |
|----------------|-------------------------|
| Hadrons (60%)  | Near perfect (TRK)      |
| Photons (30%)  | 20% / $\sqrt{E}$ (ECAL) |
| Neut Had (10%) | 60% / √E (CAL           |

#### 2/24/2012

Jim Brau

#### EDIT 2012

33

# **ILC Particle Flow Calorimetry**

Simulation (PandoraPFA) gives ∆E/E = 3-4% in full simulation
Experimental confirmation coming from CALICE
PFAs have become a design tool, useful for detector optimization.



### ILC Hadronic Calorimetry

#### **Hadronic Particle Flow Calorimetry**

- ★ 1 x 1 m<sup>2</sup> Scintillator Hcal (3 x 3 cm<sup>2</sup> pixels) has been beam tested
- ★ 1 x 1 m<sup>2</sup> RPC digital Hcal (1 x 1 cm<sup>2</sup> pixels) also tested

Jim Brau

\* Hardware demonstrated, but "particle flow" is harder to prove!





2/24/2012

#### **CALICE Scintillator Hcal**



### ILC Digital Hadronic Calorimetry

#### **Resistive Plate Chamber (RPC) 1 m<sup>3</sup> prototype**

 ★ 1 x 1 cm<sup>2</sup> pads with one threshold (1-bit) → Digital Calorimeter 38 layers in DHCAL and 14 in tail catcher (TCMT)
 ~480,000 readout channels

 Validate DHCAL concept with large RPC systems Measure hadronic showers in great detail Inform hadronic shower models (Geant4)









36

2/24/2012

#### Jim Brau

### ILC EM Calorimetry (Si/W)

 Silicon-tungsten calorimeter offers very high density, with fine segmentation

critical component of PFA

#### Silicon sensors:

- Hamamatsu 6-inch
- low leakage current; DC coupled

#### Integrated readout chip (KPiX):

- 1k channels
- low noise (10% of MIP)
- large dynamic range: ~10<sup>4</sup>
- full digitization and muliplexed output
- passive cooling (power pulsing)

#### Interconnects:

- Flex cable
- R&D on KPIX sensor interconnects





37

2/24/2012

SiD Si/W ECAL Development

Jim Brau

# **Dual Readout Calorimetry**

- Fluctuations in hadronic shower driven by
  - Nuclear binding energy losses &  $\pi^0$  energy variations
- Measure separately the EM shower component
  - DREAM Collaboration measured in HE calorimeter with separate scintillating and quartz <u>fibers</u>
  - Correct for EM fraction event by event (Q/S method)
- Fermilab team (A. Para et al.) proposes a total absorption homogeneous HCAL
  - measure both Cherenkov and Scintillation light with a longitudinally segmented <u>crystal</u> HCAL with photodiodes



### **ILC Tracking**

#### **Tracking options** (two general approaches for ILC)

#### TPC (choice of ILD)

- Builds on successful experience of PEP-4, ALEPH, ALICE, DELPHI, STAR, .....
- Large number of space points, making reconstruction straight-forward
- $dE/dx \Rightarrow$  particle ID, bonus
- Tracking up to large radii
- Minimal material (endplate), important for calorimetry

#### Silicon (choice of SiD)

- Superb spacepoint precision allows tracking measurement goals to be achieved in a compact tracking volume
- Robust to spurious, intermittent backgrounds
  - ILC is not a storage ring

### **ILC Time Projection Chamber**

### ILD \* Three read-out schemes: \_ GEM, MicroMegas, Pixels





2/24/2012

Jim Brau







Gas Electron Multiplier GEM

40

### ILC Silicon Tracking



# Push Pull

 Interaction Region designed for ILD and SiD to share the beamline, in a push-pull configuration



#### Jim Brau



### **CLIC** Detector Concepts



CLIC ILD



CLIC\_SiD

| Concept                | ILD         | CLIC_ILD    | SiD     | CLIC_SiD |
|------------------------|-------------|-------------|---------|----------|
| Tracker                | TPC/Silicon | TPC/Silicon | Silicon | Silicon  |
| Solenoid Field (T)     | 3.5         | 4           | 5       | 5        |
| Solenoid Free Bore (m) | 3.3         | 3.4         | 2.6     | 2.7      |
| Solenoid Length (m)    | 8.0         | 8.3         | 6.0     | 6.5      |
| VTX Inner Radius (mm)  | 16          | 31          | 14      | 27       |
| ECAL $r_{\min}$ (m)    | 1.8         | 1.8         | 1.3     | 1.3      |
| ECAL $\Delta r$ (mm)   | 172         | 172         | 135     | 135      |
| HCAL Absorber B / E    | Fe          | W / Fe      | Fe      | W / Fe   |
| HCAL $\lambda_{\rm I}$ | 5.5         | 7.5         | 4.8     | 7.5      |
| Overall Height (m)     | 14.0        | 14.0        | 12.0    | 14.0     |
| Overall Length (m)     | 13.2        | 12.8        | 11.2    | 12.8     |

- Design for up to 3 TeV CM (eg. HCAL thicker)
- Machine backgrounds challenging
- Detector requirements being pursued
- ILD and SiD simulation/reconstruction frameworks used to jumpstart performance studies and guide detector R&D

# CLIC Detector R&D

#### **Vertex Detector**

- Most challenging requirement from beam structure O(5 nsec) hit time resolution
- **\*** Pixel technology with small pixel sizes of O(20  $\mu$ m)
- **\*** O(0.2%  $X_0$ ) material per layer;
  - High-density interconnect, thinning of wafers, ASICs or tiers;
  - low-mass construction and services
  - Advanced power reduction, power delivery, power pulsing and cooling developments



# CLIC Detector R&D

#### Tracking



High occupancies in the TPC, mostly due to yy=>hadrons. One may consider pixelised readout for the TPC in this region or suppress the inner pad rows.

requires technology/layout changes



Jim Brau

High occupancies per bunch train in inner strip tracking layers



~2.9 hits/strip per 156 ns bunch train in FTD2, including safety factor => Requires technology choices and hardware R&D

45

### **CLIC Challenges Overcome**

#### Background suppression successfully shown by

- **\*** Precise selective timing cuts on reconstructed particles (PFO's)
- **\*** Well-adapted jet reconstruction (taken from hadron colliders)



2/24/2012

Jim Brau

EDIT 2012

46

### **CLIC Detector R&D**

- Scintillator/Tungsten Hcal
   Density of W allows a compact Hcal test W Stack
   Calice will test it
- **\*** Reinforced SC Magnet Conductor
- Support and Vibration Studies nm spots and short bunch trains (which defy feedbacks) require ~nm stability
- **\*** Defining and simulating concepts
- **\*** Benchmarking physics channels







47

#### Jim Brau

### Developing MuC Detector Concepts



- The Muon Collider is an extremely challenging environment for physics
  - Radiation hard detectors required
  - High Occupancies in tracking detectors
  - High Energy deposition in calorimeters
- Ideally, achieve similar physics performance as other two Lepton Collider options:
  - Is this possible given the environment?
  - Open question

#### 2/24/2012

#### Jim Brau



# Model MuC Detectors



2/24/2012

#### Jim Brau

EDIT 2012

49

# **Muon Collider Detectors**

Fraction of hits, %

#### **Tracking**

- \* Horrendous background
  - Absorbed dose ~ LHC (concentrated)
  - Compare to ILC ~ LHC/10,000
- **\*** Paired layers with timing info?
  - rad-hard technologies and actively cooled sensors

#### **Calorimetry**

#### Traveling trigger? (pixel calorimeter)

- **\*** Each crossing, a trigger is generated.
- **\*** Each cal pixel triggered by 2 ns gate.
- ★ Gate start coincides with the time taken for light to travel from IP to the pixel.
- ★ End of trigger = t light + 2 ns.

#### Jim Brau



# Particles in the MuC Detector



Baryons

**\*** 2 x10<sup>8</sup> EM

 ~100 TeV energy

 **\*** 4.6 x 10<sup>7</sup> baryons

 ~1000 TeV energy

Note – yellow hits > 2 nsec out of time Raja, Telluride 2011

2/24/2012

Jim Brau

EDIT 2012 51

# **Employing the Traveling Trigger**

#### EM

#### 2 ns traveling trigger

2/24/2012

Jim Brau

Baryons

Raja, Telluride 2011

52

### Summary

★ The Lepton Collider is the next energy frontier facility needed to complement the LHC.

\* Three collider options with differing capabilities and technical readiness offer technologies for this LHC companion ILC, CLIC, MuC

- ★ The physics goals motivating these energy frontier lepton colliders set demanding requirements for detectors, some of which have been addressed with recent detector R&D for the linear collider.
- \* The machine environments at ILC, CLIC, and MuC pose additional, and sometimes severe, challenges for detector design.
- If the physics of the LHC justifies it, the ILC is now ready for a construction start.

\* If multi-TeV Lepton Collider needed, CLIC or MuC may be answer after additional successful R&D.

2/24/2012

Jim Brau

EDIT 2012 53